Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 14: 1356250, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515581

RESUMO

The serrated pathway to colorectal cancers (CRCs) is a significant pathway encompassing five distinct types of lesions, namely hyperplastic polyps (HPs), sessile serrated lesions (SSLs), sessile serrated lesions with dysplasia (SSL-Ds), traditional serrated adenomas (TSAs), and serrated adenoma unclassified. In contrast to the conventional adenoma-carcinoma pathway, the serrated pathway primarily involves two mechanisms: BRAF/KRAS mutations and CpG island methylator phenotype (CIMP). HPs are the most prevalent non-malignant lesions, while SSLs play a crucial role as precursors to CRCs, On the other hand, traditional serrated adenomas (TSAs) are the least frequently encountered subtype, also serving as precursors to CRCs. It is crucial to differentiate these lesions based on their unique morphological characteristics observed in histology and colonoscopy, as the identification and management of these serrated lesions significantly impact colorectal cancer screening programs. The management of these lesions necessitates the crucial steps of removing premalignant lesions and implementing regular surveillance. This article provides a comprehensive summary of the epidemiology, histologic features, molecular features, and detection methods for various serrated polyps, along with recommendations for their management and surveillance.

2.
Nat Commun ; 12(1): 3306, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083530

RESUMO

Photoredox-mediated umpolung strategy provides an alternative pattern for functionalization of carbonyl compounds. However, general approaches towards carboxylation of carbonyl compounds with CO2 remain scarce. Herein, we report a strategy for visible-light photoredox-catalyzed umpolung carboxylation of diverse carbonyl compounds with CO2 by using Lewis acidic chlorosilanes as activating/protecting groups. This strategy is general and practical to generate valuable α-hydroxycarboxylic acids. It works well for challenging alkyl aryl ketones and aryl aldehydes, as well as for α-ketoamides and α-ketoesters, the latter two of which have never been successfully applied in umpolung carboxylations with CO2 (to the best of our knowledge). This reaction features high selectivity, broad substrate scope, good functional group tolerance, mild reaction conditions and facile derivations of products to bioactive compounds, including oxypheonium, mepenzolate bromide, benactyzine, and tiotropium. Moreover, the formation of carbon radicals and carbanions as well as the key role of chlorosilanes are supported by control experiments.

3.
J Am Chem Soc ; 143(7): 2812-2821, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33561344

RESUMO

Carboxylic acids, including amino acids (AAs), have been widely used as reagents for decarboxylative couplings. In contrast to previous decarboxylative couplings that release CO2 as a waste byproduct, herein we report a novel strategy with simultaneous utilization of both the alkyl and carboxyl components from carboxylic acids. Under this unique strategy, carboxylic acids act as bifunctional reagents in the redox-neutral carbocarboxylation of alkenes. Diverse, inexpensive, and readily available α-AAs take part in such difunctionalizations of activated alkenes via visible-light photoredox catalysis, affording a variety of valuable but otherwise difficult to access γ-aminobutyric acid derivatives (GABAs). Additionally, a series of dipeptides and tripeptides also participate in this photocatalytic carbocarboxylation. Although several challenges exist in this system due to the low concentration and quantitative amount of CO2, as well as unproductive side reactions such as hydrodecarboxylation of the carboxylic acids and hydroalkylation of the alkenes, excellent regioselectivity and moderate to high chemoselectivity are achieved. This process features low catalyst loading, mild reaction conditions, high step and atom economy, and good functional group tolerance, and it is readily scalable. The resulting products are subject to efficient derivations, and the overall process is amenable to applications in the late-stage modification of complex compounds. Mechanistic studies indicate that a carbanion is generated catalytically and it acts as the key intermediate to react with CO2, which is also generated catalytically in situ and thus remains in low concentration. The overall transformation represents an efficient and sustainable system for organic synthesis, pharmaceutics, and biochemistry.


Assuntos
Alcenos/química , Aminoácidos/química , Dióxido de Carbono/química , Peptídeos/química , Ácidos Carboxílicos/química , Luz , Ácido gama-Aminobutírico/química
4.
J Cancer ; 9(20): 3647-3650, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30405832

RESUMO

Background: Esophageal squamous cell carcinoma (ESCC) is one of the most lethal cancers in China. Recently, a study identified that cullin 3 (CUL3) was significantly mutated and deleted in ESCC. We then hypothesis that germline variants in CUL3 may also associated with the susceptibility of ESCC. Variants in the gene 3'-untranslated region (3'-UTR) may associate with gene expression by altering miRNAs binding. Material and Methods: We systematically searched for variants in the 3'-UTR of CUL3 using the Ensembl database. Taqman SNP Genotyping Assay was performed in 638 ESCC cases and 546 controls to examine the association between the rs2396092 and the risk of ESCC. The eQTL analysis for CUL3 were conducted by using the GTEx database. Results: We identified that the rs2396092 was significantly associated with the susceptibility of ESCC. Compared with the TT genotype carriers, the CT genotype and CC genotype carriers were correlated with risk of ESCC with odds ratio being 1.33 (95% CI: 1.04-1.70, P=0.0222) and 1.63 (95% CI: 1.07-2.50, P=0.0241), respectively. Different genotypes of rs2396092 was also shown to be correlated with altered CUL3 expression. Conclusion: The results emphasize the importance of CUL3 in the development of ESCC and may contribute to the personalized prevention of this cancer in the future.

5.
Oncotarget ; 8(30): 49380-49394, 2017 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-28537902

RESUMO

Ovarian cancer presents the highest mortality rate among gynecological tumors. Here, we measured cell viability, proliferation, apoptosis, autophagy, and expression of endoplasmic reticulum stress (ERS)-related proteins, PI3K/AKT/mTOR pathway-related proteins, and apoptosis- and autophagy-related proteins in SKOV3 and SKOV3/CDDP cells treated with combinations of CDDP, tunicamycin, and BEZ235 (blank control, CDDP, CDDP + tunicamycin, CDDP + BEZ235, and CDDP + tunicamycin + BEZ235). Increasing concentrations of tunicamycin and CDDP activated ERS in SKOV3 cells, reduced cell viability and proliferation, increased apoptosis and autophagy, enhanced expression of ERS-related proteins, and inhibited expression of PI3K/AKT/mTOR pathway-related proteins. CDDP, tunicamycin, and BEZ235 acted synergistically to enhance these effects. We also detected lower expression of the ERS-related proteins caspase-3, LC3 II and Beclin 1 in ovarian cancer tissues than adjacent normal tissues. By contrast, expression of Bcl-2 and PI3K/AKT/mTOR pathway-related proteins was higher in ovarian cancer tissues than adjacent normal tissues. Lastly, expression of the ERS-related proteins Beclin 1, caspase-3 and LC3 II was higher in the sensitive group than the resistant group, while expression of Bcl-2, LC3 I, P62 and PI3K/AKT/mTOR pathway-related proteins was decreased. These results show that ERS promotes cell autophagy and apoptosis while reversing chemoresistance in ovarian cancer cells by inhibiting activation of the PI3K/AKT/mTOR signaling pathway.


Assuntos
Apoptose , Autofagia , Resistencia a Medicamentos Antineoplásicos , Estresse do Retículo Endoplasmático , Neoplasias Ovarianas/metabolismo , Adulto , Idoso , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/efeitos dos fármacos , Autofagia/genética , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Feminino , Expressão Gênica , Humanos , Pessoa de Meia-Idade , Neoplasias Ovarianas/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Tunicamicina/farmacologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...